do księgarni stacjonarnej zapraszamy od poniedziałku do piątku w godzinach 9–18
53-149 Wrocław, ul. Racławicka 11/1B
e-mail: sklep@matmaigry.pl
pełne dane adresowe: Kontakt i Lokalizacja
informacje o wysyłce: Dostawa i Płatności
lista gier dostępnych w wypożyczalni
Planimetria. Matematyka olimpijska
Opis
SERIA Matematyka olimpijska
autorzy: Beata Bogdańska, Adam Neugebauer
Książka prezentuje podstawowe pojęcia i metody geometrii elementarnej. Zawiera 115 udowodnionych twierdzeń, 60 szczegółowo rozwiązanych zadań i 400 ćwiczeń do samodzielnej pracy. Ponadto tomik zawiera chronologiczne zestawienie nazwisk, alfabet grecki, indeks nazw oraz bibliografię odsyłającą głównie do uzupełnienia lektury oraz dalszych zbiorów zadań. Wiadomości i zadania zebrane są w pięciu działach.
• Planimetria pretalesowska zawiera podstawowe definicje i aksjomaty oraz ćwiczenia z wnioskowania dedukcyjnego. Następnie wprowadzone są pojęcia z zakresu szkolnej matematyki: różne typy kątów, kąty związane z okręgiem, cechy przystawania trójkątów, własności czworokątów, szczególne punkty trójkąta, konstrukcje wielokąta wpisanego w okrąg i opisanego na okręgu, trójkąty ortyczne i czworokąty cykliczne, pola wielokątów, zasadnicze twierdzenie planimetrii i twierdzenie Pitagorasa. Wśród zagadnień niewystępujących w programie nauczania szkolnego pojawiają się: prosta Wallace'a-Simsona i twierdzenie Miquela.
• Twierdzenie Talesa i podobieństwo trójkątów zawiera rozmaite zastosowania tych pojęć w geometrii, a także twierdzenia: Ptolemeusza o czworokącie wypukłym, Carnota, Ponceleta, Morleya o trójsiecznych, Hamiltona i pojęcia takie jak: potęga punktu względem okręgu, oś potęgowa, potęgowe kryterium współokręgowości, okrąg Apoloniusza, okręgi ortogonalne, dwustosunek, czwórka harmoniczna, prosta Eulera, okrąg dziewięciu punktów oraz ich zastosowania. W tym rozdziale znajdujemy tez elementy trygonometrii jak np. twierdzenie sinusów i kosinusów, podstawowe tożsamości trygonometryczne, wzór Herona, a także twierdzenie Stewarta, wzór Brahmagupty i twierdzenie Urquharta, punkt i kąt Crelle'a-Brocarda, twierdzenie o siedmiu okręgach i ich zastosowania.
• Współliniowość i współpękowość, w którym podstawowymi narzędziami są: jednokładność, inwersja względem okręgu, odpowiedniość biegunowa względem okręgu i współrzędne barycentryczne. Poznajemy twierdzenia geometrii rzutowej Menelaosa, Gaussa, Desarquesa, Pascala, Pappusa i Brianchona. Rozwiązujemy słynne zadania Napoleona, Fermata, dowodzimy twierdzenia Cevy, poznajemy pojęcie symediany i stosujemy je w różnych sytuacjach geometrycznych. W zastosowaniach statyki do geometrii poznajemy pojęcia środka masy, momentu bezwładności i współrzędnych barycentrycznych, za pomocą jednokładności dowodzimy twierdzenia Feuerbacha i rozwiązujemy zadanie Apoloniusza o okręgu stycznym do trzech danych okręgów.
• Przekształcenia geometryczne, w którym poznajemy izometrie płaszczyzny i ich własności grupowe, dokonujemy klasyfikacji izometrii i wykorzystujemy je w zadaniach konstrukcyjnych. Podobnie postępujemy z podobieństwami płaszczyzny, a następnie poznajemy przekształcenia afiniczne i rzutowe.
• Stożkowe, w którym własności metryczne, geometryczne i optyczne elipsy, paraboli i hiperboli poznajemy w ujęciu syntetycznym, analitycznym i rzutowym.
Pliki do pobrania:
Cechy produktu
wydawca | Wydawnictwo Szkolne Omega |
wydanie | trzecie |
miejsce i rok wydania | Kraków, czerwiec 2022 |
ISBN | 978-83-7267-711-2 |
format | 16,5 × 23,5 cm |
oprawa | miękka |
liczba stron | x + 284 |
Koszty dostawy Cena nie zawiera ewentualnych kosztów płatności
labirynty eksperymenty kodowanie tabliczka mnożenia zegar i kalendarz metoda Montessori Kangur Matematyczny logopedyczne potyczki
egzaminy matura kmik olimpiady samouczki leksykony... zeszyty ćwiczeń gry i zabawy karty pracy wypełnianki opowiastki geometria arytmetyka algebra funkcje kopis logika i zbiory grafy popularyzacja biografie i historia nauki matematyka z TI dla rodziców dla nauczycieli dla studentów dla pasjonatów
dla dwóch osób kooperacyjne karcianki szybkość i spostrzegawczość wersje podróżne memo 3D wspomagające naukę liczenia losowe wiedzowe słowne kalambury itp. zmysły łamigłówki dla twardzieli